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a b s t r a c t

The effect of initial conditions on the growth rate of turbulent Rayleigh–Taylor (RT) mixing has been
studied using carefully formulated numerical simulations. An implicit large-eddy simulation (ILES) that
uses a finite-volume technique was employed to solve the three-dimensional incompressible Euler equa-
tions with numerical dissipation. The initial conditions were chosen to test the dependence of the RT
growth parameters (ab, as) on variations in (a) the spectral bandwidth, (b) the spectral shape, and (c) dis-
crete banded spectra. Our findings support the notion that the overall growth of the RT mixing is strongly
dependent on initial conditions. Variation in spectral shapes and bandwidths are found to have a complex
effect of the late time development of the RT mixing layer, and raise the question of whether we can
design RT transition and turbulence based on our choice of initial conditions. In addition, our results pro-
vide a useful database for the initialization and development of closures describing RT transition and
turbulence.

Published by Elsevier Ltd.
1. Introduction

Rayleigh–Taylor (RT) instability [1–3] occurs when a light fluid
(q1) accelerates a heavy fluid (q2) in the presence of infinitesimal
interfacial perturbations h0 of wavelength k ¼ 2p=k at the inter-
face. The instability is of interest due to its impact in such fields
of study as climate dynamics [4,5], combustion and chemical reac-
tor processes [6,7], pollutant dispersion [8], Inertial Confinement
Fusion (ICF) [9,10], and cosmic and stellar dynamics [11,12]. At
early times, for small enough initial perturbations (h << 1/k), the
flow can be described by linear analysis [13] and the amplitude
grows exponentially according to:

hðtÞ ¼ h0 coshðCtÞ; ð1Þ

where, C ¼
ffiffiffiffiffiffiffiffiffiffi
Atgk

p
is the classical growth rate, and the Atwood

number At = (q1 � q2)/(q1 + q2) is the non-dimensional density con-
trast between the two fluids. When the flow transitions to nonlin-
earity ðh � 1=kÞ, the growth slows down and the amplitude
increases linearly with time. In this regime, the flow evolves into
bubbles of lighter fluid rising through the heavy fluid with a termi-
nal velocity /

ffiffiffi
k
p

for a single mode [14,15], and corresponding
spikes of heavy fluid falling through the light fluid. In the presence
Ltd.
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of a spectrum of modes, the RT flow is dominated by successively
longer wavelengths of the dominant bubbles kb. For a constant
acceleration, the mixing width growth attains self-similarity (i.e.,
as the bubbles grow they preserve their aspect ratio) such that
the mixing width grows quadratically [16,17] with time according
to the relation:

hb;s ¼ ab;s Atgt2; ð2Þ

hb and hs are the heights (above/below the initial density interface)
of ‘‘rising” bubbles and ‘‘falling” spikes, respectively; ab and as de-
note growth rate parameters (for the bubbles and spikes). The
implication of Eq. (2) is that the flow has lost memory of the initial
conditions and the only relevant length scale is the self-similar scale
Agt2. However, universal values of the growth parameters has
eluded both numerical and experimental investigation, and has
been attributed to the variations in the structure of the initial con-
ditions employed in experiments and simulations [18,19]. Physi-
cally, self-similarity in RT can generally be achieved through two
limiting scenarios: bubble merger and/or bubble competition
[19,20]. Bubble merger occurs when two or more bubbles merge
to form a larger structure that then undergoes a second generation
of mergers and so on. In bubble competition, amplification and sat-
uration of successively longer wavelengths, already present in the
initial spectrum, dominates the flow. Haan [14] considered the con-
structive interference experienced by adjacent modes in a wave-
packet, triggering transition when the sum of modal amplitudes
in the wave-packet is �r/k (r being a non-linear threshold). Thus,
individual modes may become non-linear even when their
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Nomenclature

Alphabetical listing
ak, bk, ck, dk spectral amplitudes
f volume fraction
g gravity
hb mix width: bubbles
hs; mix width: spikes
h total mix-width h = hb + hs

k wave-number
p pressure
ps spectral index
t time
u, v, w velocity components
x, y, z spatial co-ordinates
Dx, Dy, Dz cell-widths
Dt time step
At Atwood number
W integral mix width

Greek symbols
a growth-parameters
{ ratio of KE

D size of computational cell
ee =Dtu/x
m viscosity
C linear growth rate
h molecular mix parameter
K ratio of mean square amplitudes

Subscript
0 initial value
1,2 heavy, light
b,s bubble, spike
x, y, z co-ordinates
e, n, s, w face values (e: east, w: west, etc.)
E, N, S, W cell center values (e: east, w: west, etc.)
max maximum value
total total value

Superscript
� intermediate value
‘ rms value
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amplitudes are below the threshold due to their interaction with
adjacent modes of similar phase. We can interpret Eq. (2) to be
the quadratic envelope of the growth curves of all such individual
modes [20]. By changing the initial amplitudes of these modes,
we may cause them to saturate earlier (or later), and thus the slope
of this envelope (ab) can be changed. Since the disturbances grow
exponentially up to saturation, the time to nonlinearity (and thus
ab) depends logarithmically on the initial amplitudes.

Youngs [21] performed large-eddy simulations (LES) of RT at a
resolution of 720 � 480 � 480, initialized with a spectrum that
had energy only in the high mode-numbers (90–180). The flow
evolved with a growth rate of ab � 0.027, which doubled to ab

� 0.057 with the addition of a single long wavelength in the initial
spectrum at a mode-number of 2. Cabot and Cook [22], in their
large (30923) direct numerical simulations (DNS) at a maximum
Reynolds number (defined as Re ¼ h _h=m) of �3 � 104, studied the
effect of the initial spectral peak (k=kmax) on the growth rate. They
report self-similarity only for the case with the highest value of the
peak wave-number kmax. Their plots of ab asymptotes to a value of
0.025 which is much lower than the corresponding values obtained
from experiments. The DNS of Young et al. [23] used an annular
spectrum that evolved through mode-coupling and gave
ab � 0.03. Simulations in which numerical diffusion is suppressed
through a Front-Tracking technique [24] found a higher value for
ab � 0.07. Thus, while most numerical simulations are initialized
with annular spectra, experiments have inherent long-wavelength
content in their initial conditions [25–27]. Ramaprabhu and An-
drews [18] initialized RT simulations with initial conditions that
contained long wavelengths measured directly from their Water
Channel [26], and found good agreement between the experimen-
tal and numerical values of ab. Similar long wavelength perturba-
tions have also been observed in the experiments of Banerjee
et al. [25] and Dimonte and Schneider [27], suggesting that exper-
iments do not evolve purely through the bubble merger mecha-
nism. Ramaprabhu et al . [19] suggests that these two processes
(bubble merger and bubble competition) exist simultaneously in
experiments and are in competition, or perhaps they are compli-
mentary. The current work examines the concepts described above
through three-dimensional numerical simulations with carefully
imposed initial conditions. We explore possible influences on the
growth rates with simulations that have annular spectra at differ-
ent amplitudes. Effects associated with variation of this annular
spectrum, such as: the spectral shapes (referred to as the Spectral
Index (ps) herein, and quantified as the exponent of the wave-num-
ber i.e., h0 ¼ kps ); and, effects of spectral width and discretely
banded spectra imposed on the initial condition are also investi-
gated. The remainder of the paper is organized as follows. In Sec-
tion 2 we describe the governing equations and the numerical
algorithm. Details of the computational setup are provided in Sec-
tion 3. Results from a multi-mode study are described in Section 4
followed by discussion and conclusions in Section 5.

2. Governing equations and numerical details

2.1. Governing equations

The incompressible Euler equations are used in conjunction
with the ILES (see below for more details) modeling technique:

Volume conservation : r � u ¼ 0 ð3Þ

Scalar transport :
Df
Dt
¼ 0 ð4Þ

Momentum :
DðquÞ

Dt
¼ �rpþ qg ð5Þ

with the fluid velocity u = (u, v, w), density, q, pressure, p, and grav-
ity, g = (0, 0, gz), and scalar f. There are six independent variables
and five equations; the sixth equation is a linear equation of state
for density such as q = L(f). In the present work we take f to be
the non-dimensional density, or mixture fraction, defined as
f = (q � q2)/(q1 � q2).
2.2. Numerical solution procedure

2.2.1. Overview
For the present studies we have used ILES (implicit large-eddy

simulation) modeling which involves solving Euler governing
equations and uses numerical diffusion to model turbulent diffu-
sion. Success with this modeling technique for buoyancy driven
flows has been reported by Youngs [21]. The governing equations
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presented above are a coupled set of partial differential equations
for which there exist several solution procedures. The present
work solves the governing equations using the RTI-3D code de-
scribed by Andrews [28]. In particular, a fractional time step tech-
nique is used in which for each time step an advection calculation
is followed by a Lagrangian source term update. The Lagrangian
update is presented next, and this is followed by a brief description
of the advection step for the scalar f (more details about the tech-
nique may be found in Andrews [28], and Andrews Ph.D. Thesis
[29]).

2.2.2. Lagrangian momentum source term updates
The Lagrangian w momentum equation is:

w�n ¼ wnþ1=2
n þ Dt

qtDy
ðpn

P � pn
TÞ þ gz ð6Þ

The n + 1/2 superscript refers to a value from the advection calcula-
tion, and * to an intermediate value that does not necessarily satisfy
continuity. The subscripts refer to spatial position (north face), typ-
ical of the SIMPLE method [30], and a staggered arrangement of
momentum and mass cells is used. Following the SIMPLE practice,
velocity corrections are defined so that unþ1

i;e ¼ u�i;e þ Dui;e (and simi-
larly for the other velocities) and a new pressure pnþ1

P ¼ pn
P þ Dpp

where Dp is a pressure correction. By substituting these expressions
for n + 1 into the volume conservation equation and then subtract-
ing Eq. (6) evaluated with the * we arrive at the usual Poisson equa-
tion for pressure corrections:

aPDpP þ aEDpE þ aWDpW þ aNDpN þ aSDpS ¼ �Div ð7Þ

with Div the divergence of the * velocity values. The Poisson Eq. (7)
is solved using a Full Multi-Grid method, and the pressure correc-
tions are used in a SIMPLE style [30] to provide updated (n + 1)
velocities and pressures that simultaneously satisfy the momentum
Eq. (5) and volume conservation.

2.2.3. Transport procedures
The 3D transport procedures are split into x/y/z-steps, this frac-

tional splitting simplifies the calculation to one-dimensional up-
dates that lends itself to high order calculation of cell fluxes with
the Van Leer [31] method. There follows a brief description of
the scalar x-step advection, the y- and z-steps being similar, and
similar advection steps are performed for the momentum. The
x-step advection for the scalar is given by:

f �P ¼ f n
P þ DyDzDtðuefe � uwfwÞ ð8Þ

where P refers to the center of a control volume, e the east face, and
w the west face. The face values for the u velocities are available,
and the face values for the scalar are computed using a second order
approximation with Van Leer limiting to prevent non-physical
oscillation as:

fe ¼ fupwind þ signðeeÞ
ð1� eeÞ

2
DxDe ð9Þ

where ee=Dtue/Dx, and upwind values are taken according to the
sign of ee. The derivative is evaluated following Van Leer [31] as:

De ¼ S min jDj;2jDwj
Dx

;
2jDej
Dx

� �
ð10Þ

where Dw ¼ f n
P � f n

W ; De ¼ f n
E � f n

P and S ¼
1 if De and Dw > 0
�1 if De and Dw < 0
0 otherwise

8<
: .

Van Leer limiters have been used in Eq. (10) to limit the gradi-
ent of the volume fraction profile, thereby preventing spurious
oscillations. The representation for the gradient of the cell profile
D determines the accuracy of the representation. In the present
work D = (De + Dw)/(2Dx), so the gradient is computed with a cen-
tral difference so this scheme is referred to as ‘‘second-order”. Of
significant importance in the simulation of R–T flows is the convec-
tion calculation of the fluxes of mass and momentum. A third-or-
der Van Leer method [31] used to compute convective fluxes,
minimizes numerical diffusion and prevents spurious overshoots
and undershoots that occur due to the use of higher order numer-
ical schemes. A two-phase, 2D version of this code was tested and
validated for both RT and Kelvin–Helmholtz flows by Andrews
[27]. The 3D, single-phase version was used extensively [18–20]
to compute both the single-mode and multi-mode RT problem,
and compared well with other benchmark codes commonly used
in the study of RT. Over the last 30 years, great progress has been
made in the development of numerical methods employed in the
study of RT flows. However, numerical diffusion has served to de-
grade the resolution and accuracy of these methods. This numeri-
cal diffusion is now being taken advantage of through the ILES
technique [21].

While RTI-3D solves the Euler equations with no explicitly spec-
ified viscosity, numerical diffusion serves to dissipate small scales
in a similar manner to physical viscosity. Such numerical tech-
niques referred to as ILES have been demonstrated to be particu-
larly attractive for flows with discontinuities (RT) and shocks (as
in Richtmyer–Meshkov (RM) Instability) [21]. The effective numer-
ical viscosity of the ILES technique used here was determined
through comparison of single-mode simulations with linear theory
results [13]. Details about the technique used may be found else-
where [19,20]. The implication of a numerical viscosity for multi-
mode simulations is that similar to a physical viscosity, it sets an
upper bound for the fastest growing modes. Smaller wavelengths,
present in the initial conditions, or generated through non-linear
interactions (mode-coupling), are smeared out by the numerical
viscosity.

3. Problem set up and computational details

Fig. 1a is a schematic of the computational domain used in the
current work. The dimensions of the three-dimensional box are
1 � 1 � 2 m (L � L � 2L) in the x-, y- and z-directions, respectively,
(where z is the direction of gravity). The interface between the hea-
vy (q1) and light (q2) fluids is at z = 0. The densities were chosen to
be q1 = 3.0 kg/m3 and q2 = 1.0 kg/m3 which corresponds to At = 0.5,
while the acceleration due to gravity gz was set to be �9.81 ms�2.
Perturbations h0(x, y) are imposed at the interface (z = 0) as fluctu-
ations of a constant density surface (see Fig. 1b). These are then
converted to volume fraction fluctuations using:

f1ðx; yÞ ¼ 1þ h0ðx; yÞ=D; for h0 < 0
f1ðx; yÞ ¼ h0ðx; yÞ=D; for h0 > 0

ð11Þ

where D is the width of the computational cell. The pressure is ini-
tialized to the hydrostatic value in this incompressible problem
using, p(z)=-

R
qgdz, where q = f1q1 + f2q2, is the unperturbed initial

density field. This is an important initial condition to set, because
without it the algorithm will seek to establish the hydrostatic con-
dition on the first time step, involving hundreds, if not thousands, of
iterations for the pressure correction calculation. If an initial hydro-
static pressure field is provided, only three or four iterations are re-
quired on the first time step for pressure convergence. Periodic
boundary conditions were used in the x- and y-directions, while
zero-flux conditions were imposed in the z-direction. All the simu-
lations reported here used a resolution of 128 � 128 � 256 grid
points (totaling 4.2 million cells) in the x-, y- and z-directions,
respectively. The calculations were stopped when the bubble height
reached �0.9 m to avoid boundary effects. The simulations were
executed on the NIC Cluster at Missouri S&T. The run-times aver-
aged around 3 CPU hours per calculation. Each of these simulations



Fig. 2. Initial perturbations (at z = 0 in Fig. 1b) for simulation 1 in (a) physical, and
(b) wave-number space.

Table 2

Fig. 1. Schematic of (a) computational domain used in NS. The box size is 1 � 1 � 2 m (in the x-, y- and z-directions) with densities q1 = 3.0 kg/m3, q2 = 1.0 kg/m3 and
gz = �9.81 ms�2; (b) location of density perturbations imposed on the interface at t = 0.
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required 2GB of RAM and �4GB of storage. The grid independence
study indicates little change with increasing resolution (see Table 1)
of the reported parameters in this work. Similar grid-independence
for related ILES has also been demonstrated by Youngs [21].

3.1. Multimode calculations – initial conditions

The multimode calculations were designed to test the depen-
dence of the growth constant ab on the spectral index, spectral
bandwidth, discrete spectral shapes and mode coupling. Modes
16–32 are selected for the mode coupling case to able cross com-
parison of the present simulations with the a-group results [20].
Dimonte et al. [20] suggests that this mode coupling case is least
sensitive to initial conditions because it involves the non-linear
coupling of saturated high-k modes of intrinsic scales h � 1/k. To
assure that the low-k modes are generated exclusively by mode
coupling, the initial perturbations are chosen to have finite ampli-
tudes only in an annular shell in k-space at the largest resolvable
wave numbers (see Fig. 2), namely, modes 16–32 for the
128 � 128 � 256 simulations [20]. The initial perturbations are ta-
ken to be:

hðx; yÞ ¼
X
kx ; ky

ak cosðkx xÞ cosðky yÞ þ bk cosðkx xÞ sinðky yÞ

þ ck sinðkx xÞ cosðky yÞ þ dk sinðkx xÞ sinðky yÞ ð12Þ
Table 1
Test of grid independence (IC Modes 16–32; ps = 0). All simulations reported in this
work had a grid size of 128 � 128 � 256.

Grid size ab;s ¼
dhb;s

dðAt gt2Þ KEtotal/DPE h

ab as

64 � 64 � 128 0.0216 0.0283 0.521 0.826
128 � 128 � 256 0.0219 0.0263 0.499 0.833
256 � 256 � 512 0.0244 0.0266 0.485 0.814
where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y

q
, and the spectral amplitudes are chosen ran-

domly but give an rms amplitude of �3.15 � 10�4 L. Fig. 2a and b
show the multimode perturbation amplitudes in both physical
and wave-number space. Table 2 is a list of all the numerical
simulations (NS) presented in this work. Simulations 1–3 were
List of simulations reported in the current work.

Case # IC modes SI (ps)

1 16–32 0
2 16–32 +1
3 16–32 �1
4 8–32 0
5 2–32 0
6 4–6 and 16–32, K = 5 0
7 4–6 and 16–32, K = 50 0
8 4–6 and 16–32, K = 100 0
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performed to study the effect of Spectral Index on the RT growth.
These calculations had energy in mode numbers (n = kL/2p) 16–
32, but had spectral indices (ps) of �1, 0 (white noise, a-group IC
case) and 1. A spectral index of 1 corresponds to more energy in
the high mode-numbers as compared with a spectral index of 0
(white noise). Correspondingly, calculations with spectral index of
�1 had more energy in the low mode-numbers as compared with
the other cases (i.e., ps = 0 and 1). Simulations 4–5 were initialized
with the smallest mode-numbers (longest wavelength) Nmin = 2
and 8; the objective being to study the effect of spectral bandwidth
on the growth parameters. The energy density spectrum has the
canonical property:

h020
2
¼
Z kmax

kmin

Eh0ðkÞdk: ð13Þ

Thus, all the simulations were initialized with the same perturba-
tion rms amplitude (hrms), thereby ensuring that all the simulations
had the same initial energy. Similarly cases 6–8 take into account
the effect of discrete banded spectra. Energy was deposited in two
concentric bands between mode numbers 4–6 and 16–32. Care
was taken to ensure that the total energy used for these simulations
was identical to the energy used in cases 1–5 by re-writing Eq. (13)
for a banded spectrum such that:

h020
2
¼
Z kmax

kmin

Eh0ðkÞdk ¼
Z k1

kmin

Eh1ðkÞdkþ
Z kmax

k2

Eh2ðkÞdk ¼ h021
2
þ h022

2
:

ð14Þ

The ratio of the mean square amplitudes (K ¼ h022=h021 ) in the
two concentric bands were varied to test the influence of the small
mode-numbers on the simulations. Cases 6–8 are simulations that
correspond to K = 5, 50 and 100, respectively. Fig. 3 shows the azi-
muthally averaged initial perturbations for all the simulations (1)–
(8). We also address the issue of the peak wave-number in the
presence of numerical viscosity in these simulations. Numerical
viscosity (similar to other stabilizing mechanisms like surface ten-
sion) places an upper bound on the fastest growing wave-numbers.
The peak wave-number kp may be determined as [32,33]:

kp � 0:5
Atg
m2

� �1=3

ð15Þ

with a peak growth rate of �0.4(g2/m)1/3. From the above, the fastest
growing mode number for the current simulations was determined
to be Np � 24 [20], and within the range of modes imposed in our
initial conditions. This guarantees that the linear growth stage is
reproduced accurately by these calculations. Most numerical simu-
lations of RT [19–23] are initialized with a similar annular distribu-
tion of energy. It is expected that the mode-coupling cases will
produce a much lower growth rate than the simulations initialized
with the longer modes [20], because the long wavelengths domi-
nate the flow at late time. The cases reported in this work are listed
below:

i. Spectral index study: cases 1–3 (note that case 1 is similar to
a-group M128 simulation and is treated as a base case for
comparison purposes).

ii. Spectral bandwidth study: cases 4 and 5.
iii. Effect of discrete banded spectra: cases 6–8.
4. Results

In this section, we analyze the 3D data fields from each of the
numerical simulations described above (cases 1–8) to quantify
growth rate, self-similarity, molecular mixing and energy dissipa-
tion for comparison with experiments and previous RT
simulations.

The fluid penetration is characterized in terms of the species
concentration or volume fraction of the ‘‘heavy” fluid f1 averaged
in the span-wise direction such that:

< f1 >¼
Z Z

f1dxdy=L2 ð16Þ

Vertical profiles of hf1i are shown in Fig. 4 for (a) early, and for (b)
late times for simulations 1–3. The profiles are nearly linear and
symmetric, characteristic of the moderate Atwood number of 0.5
used in these simulations [17,20,25]. The evolution of the mixing
zone is also depicted for case 1 in Fig. 5a by the iso-surfaces of f1

at Atgt2/L = 5.31 and 19.62, respectively. At early time, there are
numerous bubbles with wavelengths larger than the imposed
modes, and that correspond to the most unstable mode. As the bub-
bles penetrate, the flow becomes self similar and the bubbles in-
crease in size. A similar phenomenon may also be observed from
the iso-surfaces of spikes at these moderate Atwood numbers (see
Fig. 5b). Fig. 6 shows the evolution of the bubble and spike ampli-
tudes as a function of a non-dimensional self-similar length Atgt2/
L. The bubble and spike amplitudes hb and hs are defined by the z-
location where the plane averaged values of hf1i reaches values of
99% and 1% volume fractions, respectively, relative to the original
mid-position of the interface (z = 0). We also observe a ratio of hs/
hb � 1.25 at late time which is consistent with the experimental
observations [25–27] and with NS [19] at At = 0.5. The bubble and
spike amplitudes are subjected to statistical fluctuations, especially
at late time when there are few bubbles and spikes. To account for
this problem, we also plot the integral mix width (W) defined by
Andrews and Spalding [3] as:

W ¼ 6
Z
hf1ihf2idz ð17Þ

which measures the overlap of the heavy hf1i and the light hf2i fluids
where f1 + f2 = 1. The factor of six derives from considering the
width of a linear profile [3]. At small to moderate Atwood numbers
where hb � hs, we find that W/hb,s � 2 which is consistent with ear-
lier NS [19,20].

The growth-rate parameter ab is measured by using the defini-
tion from Ristorcelli and Clark (2004), (RC) [34] who, through a
self-similar analysis for small Atwood RT mixing, obtained an or-
dinary differential equation for the planar average of the mixing
layer half-width hb as:

ab;RC ¼
_h2

b

4Atghb
: ð18Þ

As an exact mathematical result (18) validates the form of heuristi-
cally derived equations [35,36] that resulted from phenomenologi-
cal buoyancy-drag type models. For constant ab,RC, At and g, the
solution to (18) (taking only the positive root as physically realiz-
able) can be written as:

hb ¼ h0 þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ab;RC Atgh0

q
t þ ab;RC Atgt2; ð19Þ

where h0 is a virtual starting thickness, that effectively depends on
how long it takes for the flow to become self-similar, which in turn
depends on the spectrum of initial perturbations. The growth rate
constants for both the bubbles and spiked are calculated based on
this definition (Eq. (18)). To cross-compare our results with earlier
simulations, we also calculate the growth-parameters based on a
definition used by Read [37]; obtained by differentiating hb,s with
respect to Atgt2. Since these definitions are applicable only when
the flow becomes self-similar, the values of ab,s listed in Table 3
were calculated for Atgt2 > 10, when almost all the NS cases (1)–
(5) studied in this work became self-similar.



Fig. 3. Azimuthally averaged initial perturbations for all NS cases listed in Table 1. Root mean square amplitude is 3.15 � 10�4 L.
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4.1. Effect of spectral index (ps)

Cases 1–3 had the rms amplitude and energy in the same mode-
number band (16–32) but spectral indices (ps) = �1, 0 (white
noise), and +1, respectively. From the time traces of hb shown in
Fig. 7, it may be observed that the ps = +1 case (case 2) grew the
fastest at early time as it has more initial energy at the high
wave-numbers (see Fig. 7a). The ps = �1 simulation (case 3) has
the slowest growth as the NS is initialized with more energy in
the low-amplitude, low wave-number (long wavelength), part of
the spectrum sampled by the flow. The corresponding growth-
parameters are plotted in Fig. 7b and show little sensitivity to ps.
Similarly, the time traces of hs displayed in Fig. 7c show no sensi-
tivity to the changes in the values of the spectral index ps and the
amplitudes of the spikes were almost identical at late time.

In addition to large-scale structures being felt in the bubbles
and spike growth parameters, small-scale effects, namely the
molecular mix parameter h [38], were also investigated. Values
for h were computed from volume fraction profiles as:

h ¼
R
hf1 f 2idzR
hf1ihf2idz

ð20Þ

where h�i denotes averaging over the x-y plane. h approaches 1 for
completely mixed fluids, and 0 for immiscible fluids. Thus, h is a



Fig. 4. Profiles of ‘‘heavy” fluid volume fraction averaged over horizontal planes at
Atgt2/L values of (a) 5.31 and (b) 19.62.
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parameter that characterizes molecular mixing. The evolution of h
with Agt2 is shown in Fig. 7 (d) for cases 1–3. For all these cases, h
asymptotes to a value of �0.8 that is consistent with experiments
[25,26,39]; although at slightly different rates. Interestingly the le-
vel of diffusion in ILES is expected to be higher than that due to true
physical mass or momentum, however, the NS produces the a sim-
ilar level of molecular mixing as experiments and high-resolution
DNS. The high-resolution ILES study of Youngs [21] gave a value
of 0.81 for h in the self-similar stage. The ILES concept is that
numerical diffusion captures the molecular mixing associated with
unresolved small-scales implicitly in the numerical scheme, and our
results support this conclusion for RT mixing.

4.1.1. Energy budget
Development of the RT flow into self-similarity involves the

conversion of initially available potential energy to kinetic energy.
The ratio of the kinetic energy of the flow to the accompanying loss
in potential energy has been found to be nearly constant for such
flows [19,20,25,26,40] at a value of 0.5. We use the approach out-
lined in [19] to define this ratio: assuming for low A, a linear profile
of the volume fractions, and hs � hb = h, then the loss in potential
energy may be written as

DPE ¼
Z 0

�h
ðq1 � hqiÞgzdzþ

Z h

0
ðhqi � q2Þgzdz � ðq2 � q1Þgh2

6
:

ð21Þ
In Eq. (21), the error in assuming hs � hb results in an overall er-
ror in DPE of ±5% for the NS presented in this paper. The corre-
sponding gain in kinetic energy is more difficult to evaluate
because density and velocity fluctuations are correlated. However,
if we replace the respective densities by their average, the average
velocity can be estimated as w � _h, which gives a vertical kinetic
energy of:

KEz ¼
1

2L2

Z þh

�h
qw2dxdydz ¼ q _h2h ð22Þ

The ratio of Eqs. (21) and (22) gives:

KEz

DPE
¼ 3

_h2

Atgh
¼ 12ab;RC ð23Þ

If there are no other energy sinks, i.e., KEz/DPE�1, we can place an
upper bound on ab,RC�0.083. However, the dissipated energy D and
kinetic energy in the horizontal directions KEx and KEy must also be
considered when calculating the global energy balance as:

DPE ¼ KEx þ KEy þ KEz þ D � KEtotal þ D ð24Þ

The total gain in kinetic energy (KEtotal) can be evaluated by inte-
grating over the entire computational domain:

KEtotal ¼
1
2

Z
qð~V � ~VÞdxdydz ð25Þ

The ratio KEtotal/DPE is plotted for cases 1–3 in Fig. 8. The fraction of
energy dissipated is given by 1-KEtotal/DPE, and approaches a value
�0.55 for these simulations. This is in good agreement with recent
experiments by the authors [25], where they report a value of D/
PE = 0.52 from their simultaneous measurements of density and
velocity fields using hot-wire anemometry. Fig. 8 is a plot of KEtotal/
DPE from all simulations in cases 1–3 and shows only a slight
dependence on the spectral index. The ratio of the vertical to the
horizontal components of kinetic energies, X = (KEx + KEy)/KEz from
these simulations was determined to be �0.61. In comparison,
Youngs (1994) gives a value of �0.48 for KEtotal/DPE and �0.7 for
the ratio of kinetic energy components (X). These values are in good
agreement with the experimentally observed values of 0.62 for X in-
ferred from a velocity ratio of �1.8 obtained from the hot-wire mea-
surements [25]. Dimonte et al. [20] combined the energy balance in
Eq. (24) with vertical kinetic energy expression of Eq. (23) to obtain
a bound of ab from the energy budget calculations as:

ab �
KEtotal=DPE
12½1þ X	 ð26Þ

At early times, when energy dissipation is small, i.e. KEtotal/DPE�1, a
value of ab � 0.053 is obtained from the NS for case 1. With the ob-
served ratio of KEtotal/DPE�0.49 at late times, Eq. (23) yields a value
of 0.0247 which is consistent with the NS results and the late time
values of ab plotted in Fig. 7b (for case 1).
4.2. Effect of spectral band-width

Ramaprabhu et al. [19] studied the effect of the longest wave-
length imposed in the initial conditions by varying the smallest
mode-number in the wave-packet, Nmin from 1 to 3. The growth-
rate parameter ab was found to be insensitive to such variations.
For much higher values of Nmin, mode-coupling is expected to play
a more dominant role, accompanied by a decrease in ab. Cases 4
and 5 illustrate the effect of variation of spectral bandwidth of
the IC on both the large scale (growth-constants, amplitude) and
small-scale (molecular mixing, KE release) parameters in the RT
mix. Cases 4 and 5 were initialized with Nmin of 2 and 8 respec-
tively, and with the same net initial energy as cases 1–3. Fig. 9
plots the values of ab,s for the different values of Nmin. Inspection



Fig. 5. Iso-surfaces of (a) f1 (bubbles) (b) f2 (spikes) at Atgt2/L = 5.31 and 19.62.

Fig. 6. Evolution of bubble and spike amplitudes (hb and hs), and integral mix width
for case 1 (energy in modes 16–32 with SI = 0).
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of Fig. 9 reveals that the growth parameters for the bubbles and
spikes vary with the change in the minimum mode number. It is
observed that the incorporation of longer wavelengths leads to
an increase in ab which asymptotes to a value of 0.023, which is
consistent with cases 1–3. However, there appears to be no clear
trend for as. Simulation 4 which is initialized with Nmin = 2 is found
to be the most efficient amongst cases 1–5 for extracting kinetic
energy from the initial density distribution KEtotal/DPE�0.7. This
again suggests that the presence of long wavelengths is an efficient
way to extract energy while minimizing dissipation. Indeed, it ap-
pears that there is a ‘‘critical” Nmin, somewhere between 16 and 8
at which energy dissipation governs the flow. This simulation also
had the largest growth-rate which implies the appearance of large-
scale structures in the flow at early times. Thus, the rate of extrac-
tion of potential energy was much higher than that observed in
simulations 1 and 5. The molecular mix parameter h at late time
is insensitive to the single banded structure (see Fig. 10), perhaps
because all the simulations had high wave-number IC’s that drives
diffusion at the smallest scales resolved.

4.3. Effect of discrete banded spectra

Figs. 11–13 present the results from partitioned initial banded
spectra, cases 6–8 of Fig. 3, and also shown for reference are the re-
sults for case 1 (the alpha group problem). Inspection of Fig. 11 re-
veals that cases 1 and 6 are remarkably similar, so it is evident that
a missing band of wave-numbers is not recognized as the high
wave-number band mode-couples to fill-in the missing domain,
and the low wave-number modes retain their identity while
waiting for the high wave numbers to develop. However, Fig. 11
shows that in cases 7 and 8 the mix width accelerates at about



Table 3
List of growth parameters, KEtotal/DPE and h for all simulations.

Case # Ristorcelli and Clark (2004)
definition ab;s ¼

_h2
b;s

4At ghb;s

a-group definition
ab;s ¼

dhb;s

dðAt gt2Þ

KEtotal/DPE h

ab as ab as

1 0.0229 0.0271 0.0219 0.0263 0.499 0.833
2 0.0270 0.0305 0.0241 0.0324 0.442 0.818
3 0.0349 0.0258 0.0304 0.0281 0.537 0.821
4 0.0285 0.0244 0.0276 0.0205 0.679 0.783
5 0.0224 0.0299 0.0181 0.0345 0.783 0.817
6 0.0302 0.0392 0.0306 0.0434 0.584 0.761
7 0.0406 0.0337 0.0493 0.0346 0.573 0.793
8 0.0461 0.0317 0.0554 0.0331 0.478 0.846
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Atgt2/L = 10, and apparently there has been a transition in the
development rate of the mixing region. We attribute this change
in growth rate to the ‘‘late” appearance of the low wave-number
(long wavelength) embedded in the initial conditions, associated
with their reduced initial amplitudes that delays their appearance.
This in-turn causes an extended period for the mode-coupling re-
gime (that explains the slight reduction just before Atgt2/L = 10).
The ab measures of Fig. 12 plainly reveal the dramatically different
growth rates associated with the partitioned energy spectra. The
Fig. 7. Evolution of (a) bubble amplitudes, (b) growth-parameter for bubbles, (c) spike a
(ps = �1). All simulations had the same total energy in modes 16–32.
peak in case 8 suggests a narrowing of the energy budget into
the long wavelengths at late time, associated with an increased
dissipation of the short wavelength band. Again, the molecular
mix parameter shown in Fig. 13 seems independent of the initial
spectrum, because it is only dependent on the presence of the high
wave-number band.

5. Conclusions

The effect of initial conditions on the growth of turbulent Ray-
leigh–Taylor (RT) instability has been studied using implicit
large-eddy simulation (ILES). We have explored possible influences
on the growth rate with simulations that are initialized with annu-
lar spectra at different amplitudes. The initial conditions were cho-
sen to test the dependence of the RT growth parameters (ab, as) on
variations in spectral bandwidth, spectral shape, and study the
effects of initially partitioned (banded) spectra.

Spectral indices (ps) = �1, 0 (white noise), and +1 were chosen
for testing. It was observed that the ps = +1 case grew the fastest
initially as it has more energy was initially in the high wave-
numbers. The ps = �1 simulation had the slowest growth as the
NS was initialized with more energy in the low-amplitude,
low wave-number, part of the spectrum sampled by the flow.
mplitudes, and (d) molecular mix parameter h, for case 1 (ps = 0), 2 (ps = +1) and 3



Fig. 8. Evolution of (a) KEtotal/DPE and (b) ab based on energy budget for cases 1–3.
Fig. 9. Effect of longest wave-length (Nmin) on (a) the growth parameters ab,RC and
ac,RC, and on (b) the KEtotal/DPE for simulation initialized with Nmin = 16, 8 and 2.

Fig. 10. Evolution of molecular mix parameter h, for case 1 (Nmin = 2, 8 and 16). All
simulations had the same total energy with amplitude 3.15 � 10�4 L.
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However, the growth parameters ab,s showed no sensitivity to
changes in the values of the spectral index ps. In addition, the ef-
fect of the longest wavelength imposed in the initial condition
was investigated by varying the smallest mode-number in the
wave-packet such that Nmin =2, 8 and 16. The growth parameters
were found to vary with the change in the minimum mode num-
ber; the incorporation of longer wavelengths leads to an increase
in ab which asymptotes to a value of 0.023 for Nmin P 8. For all
these cases, the molecular mixing parameter h remains insensi-
tive to variations in IC’s and was found to asymptote to a value
of �0.8 (consistent with experiments), perhaps because all the
simulations had a high wave-number band in the IC’s that pro-
moted diffusion at the smallest resolved scales. The present ILES
simulations produced the same level of molecular mixing as
experiments and high-resolution DNS. The effect of partitioned
initial banded spectra was also studied, and dramatically different
late-time (Atgt2/L > 10) transition and growth rates were observed.
The late appearance of the low wave-number modes embedded in
the initial conditions, whose appearance is delayed by their re-
duced initial amplitude, was found to cause an extended period
for the mode-coupling regime, and late-time accelerated growth
of the mixing region.

Our findings further support the notion that the overall growth
of the RT mixing is strongly dependent on initial conditions. The
results also raise the possibility of design and active control of RT
transition and turbulence, based on the choice of the shape and
size of the initial perturbation spectrum. In addition, our results
provide a useful database for the initialization and development
of closures describing RT transition and turbulence.



Fig. 11. Evolution of bubble amplitudes for case 1 (single band, N: 16–32) and cases
6–8 (double band, N: 4–6 and 16–32 with K = 5, 50 and 100, respectively). All
simulations had the same total energy at t = 0.

Fig. 12. Evolution of growth rate parameter for bubbles for case 1 (single band, N:
16–32) and cases 6–8 (double band, N: 4–6 and 16–32 with K = 5, 50 and 100,
respectively).

Fig. 13. Evolution of molecular mix parameter for case 1 (single band, N: 16–32)
and cases 6–8 (double band, N: 4–6 and 16–32 with K = 5, 50 and 100,
respectively).
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